42 research outputs found

    Release of premotor activity after repetitive transcranial magnetic stimulation of prefrontal cortex

    Get PDF
    In the present study we aimed to explore by means of repetitive transcranial magnetic stimulation (rTMS) the reciprocal influences between prefrontal cortex (PFC) and premotor cortex (PMC). Subjects were asked to observe on a computer monitor different pictures representing manipulations of different kind of tools. They had to produce a movement (go condition) or to keep the resting position (no-go condition) at the appearance of different cue signals represented by different colors shown alternatively on the hands manipulating the tools or on the picture background. Motor evoked potentials (MEPs) were collected at the offset of the visual stimuli before and after a 10 minute, 1 Hz rTMS train applied to the dorsolateral PFC (Experiment 1), to the PMC (Experiment 2) or to the primary motor cortex (Experiment 3). Following rTMS to the PFC, MEPs increased in the go condition when the cue for the go command was presented on the hand. In contrast, following rTMS to the PMC, in the same condition, MEPs were decreased. rTMS to the primary motor cortex did not produce any modulation. Results are discussed according to the presence of a visual-motor matching system in the PMC and to the role of the PFC in the attention-related processes. We hypothesize that the perceptual analysis for action selection within the PFC was modulated by rTMS and its temporary functional inactivation in turn influenced the premotor areas for motor programming

    Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements

    Get PDF
    Using transcranial magnetic stimulation, we explored the properties of premotor mirror neurons during the passive observation of a reaching-grasping movement in human subjects. Two different experiments were run using video-clips as visual stimuli. Video-clips showed a normally performed (control stimulus) or an anomalous reaching-grasping movement executed by delaying the time of the appearance of the maximal finger aperture (experiment 1), or substituting it with an unpredictable closure (experiment 2). Motor evoked potentials were recorded at different time-points during the observation of the video-clips. Profiles of cortical excitability were drawn and compared with the kinematic profiles of the corresponding movement. Passive observation of the natural movement evoked a profile of cortical excitability that is in concordance with the timing of the kinematic profile of the shown finger movements. Observation of the uncommon movements did not exert any modulation (experiment 1) or evoked an activity that matched, at the beginning, the modulation obtained with observation of the natural movement (experiment 2). Results show that the resonant motor plan is loaded as whole at the beginning of observation and once started tends to proceed to its completion regardless of changes to the visual cues. The results exclude the possibility of a temporal fragmentation of the resonant plan, because activation of different populations of mirror neurons for each phase of the ongoing action. They further support the notion of the role of the mirror system as neural substrate for the observing-execution matching system and extend the current knowledge regarding mechanisms that trigger the internal representation of an action

    Cathodal Occipital tDCS is unable to modulate The Sound Induced Flash Illusion in migraine

    Get PDF
    Migraine is a highly disabling disease characterized by recurrent pain.Despite an intensive effort, mechanisms of migraine pathophysiology, still represent an unsolved issue. Evidences from both animals and humans studies suggest that migraine is characterized by hyperresponsivity or hyperexcitability of sensory cortices, especially the visual cortex. This phenomenon, in turn, may affect multisensory processing. Indeed, migraineurs present with an abnormal, reduced, perception of the Sound-induced Flash Illusion (SiFI), a crossmodal illusion that relies on optimal integration of visual and auditory stimuli by the occipital visual cortex. Decreasing visual cortical excitability with transcranial direct current stimulation (tDCS) can increase the SiFI in healthy subjects. Moving from these issues , we applied cathodal tDCS over the visual cortex of migraineurs, with and without aura, in order to decrease cortical excitability and thus physiologically restoring the perception of a reliable SiFI. Differently from our expectations tDCS was unable to reliably modulate SiFI in migraine. The chronic, relatively excessive, visual cortex hyperexcitability, , featuring the migraineur brain, may render tDCS ineffective for restoring multisensory processing in this disease

    Modulation of cortical motor outputs by the symbolic meaning of visual stimuli.

    Get PDF
    Abstract The observation of an action modulates motor cortical outputs in specific ways, in part through mediation of the mirror neuron system. Sometimes we infer a meaning to an observed action based on integration of the actual percept with memories. Here, we conducted a series of experiments in healthy adults to investigate whether such inferred meanings can also modulate motor cortical outputs in specific ways. We show that brief observation of a neutral stimulus mimicking a hand does not significantly modulate motor cortical excitability (Study 1) although, after prolonged exposure, it can lead to a relatively nonspecific modulation (Study 2). However, when such a neutral stimulus is preceded by exposure to a hand stimulus, the latter appears to serve as a prime, perhaps enabling meaning to the neutral stimulus, which then modulates motor cortical excitability in accordance with mirror neuron-driving properties (Studies 2 and 3). Overall results suggest that a symbolic value ascribed to an otherwise neutral stimulus can modulate motor cortical outputs, revealing the influence of top-down inputs on the mirror neuron system. These findings indicate a novel aspect of the human mirror neuron system: an otherwise neutral stimulus can acquire specific mirror neuron-driving properties in the absence of a direct association between motor practice and perception. This significant malleability in the way that the mirror neuron system can code otherwise meaningless (i.e. arbitrarily associated) stimuli may contribute to coding communicative signals such as language. This may represent a mirror neuron system feature that is unique to humans

    Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain

    Get PDF
    Transcranial magnetic stimulation (TMS) is a non-invasive technique that uses the principle of electromagnetic induction to generate currents in the brain via pulsed magnetic fields. The magnitude of such induced currents is unknown. In this study we measured the TMS induced current densities in a patient with implanted depth electrodes for epilepsy monitoring. A maximum current density of 12 microA/cm2 was recorded at a depth of 1 cm from scalp surface with the optimum stimulation orientation used in the experiment and an intensity of 7% of the maximal stimulator output. During TMS we recorded relative current variations under different stimulating coil orientations and at different points in the subject's brain. The results were in accordance with current theoretical models. The induced currents decayed with distance form the coil and varied with alterations in coil orientations. These results provide novel insight into the physical and neurophysiological processes of TMS

    All talk and no action: a transcranial magnetic stimulation study of motor cortex activation during action word production

    Get PDF
    A number of researchers have proposed that the premotor and motor areas are critical for the representation of words that refer to actions, but not objects. Recent evidence against this hypothesis indicates that the left premotor cortex is more sensitive to grammatical differences than to conceptual differences between words. However, it may still be the case that other anterior motor regions are engaged in processing a word's sensorimotor features. In the present study, we used single- and paired-pulse transcranial magnetic stimulation to test the hypothesis that left primary motor cortex is activated during the retrieval of words (nouns and verbs) associated with specific actions. We found that activation in the motor cortex increased for action words compared with non-action words, but was not sensitive to the grammatical category of the word being produced. These results complement previous findings and support the notion that producing a word activates some brain regions relevant to the sensorimotor properties associated with that word regardless of its grammatical category

    Дизайн-проект модульной системы фитотрона для использования в домашних условиях

    Get PDF
    Объектом разработки является модульная система фитотрона. Целью: разработать модульность. Задачи: рассмотреть аналоги,изучить конструкторскую часть,разработать конструкцию полива и освещения. Разработана модульная система, выбрана система полива и система освещения.The object of development is a modular phytotron system. The goal: to develop modularity. Objectives: to consider analogues, to study the design part, to develop the design of irrigation and lighting

    Sound-Induced Flash Illusions Support Cortex Hyperexcitability in Fibromyalgia

    Get PDF
    properly cited. Objectives. Fibromyalgia (FM) is characterized by spontaneous chronic widespread pain in combination with hyperalgesia to pressure stimuli. Sound-induced flash illusions (SIFIs) reflect cross-modal interactions between senses allowing to assess a visual cortical hoerexcitability (VCH) by evaluating the fission and fusion illusions disruption. The aims of the present study were to explore whether SIFIs are perceived differently in patients with fibromyalgia as compared to healthy controls (HCs) and how migraine affects fission and fusion illusions in fibromyalgia. Methods. A single flash (F) accompanied by 0 to 4 beeps (B) was presented to induce the fission illusion while multiple flash (i.e., 2 to 4) accompanied by 0 or 1 beep was presented to induce fusion illusion. The mean number of perceived flashes in fission and fusion illusion trials was compared between the groups (i.e., FM, FM with migraine, and HCs) using repeated-measures analysis of variance. Medication history was recorded along with the administration of Fibromyalgia Impact Questionnaire and Hospital Anxiety and Depression scales. Results. Twenty-four patients with FM (mean age 51, 2 +/- 10, 6 years; 22 females), seventeen patients with FM and migraine without aura (mean age 47.8 +/- 11.4 years; 16 females; 13 chronic, 4 episodic migraine), and forty-one age-and sex-matched HCs (mean age 47.3 +/- 6.9 years; 34 females) participated in the study. Fission and fusion illusory effects were detected in all the participants. However, in FM patients, the fission illusion was reduced and almost abolished as compared to HCs (1F1B, p = 0.02; 1F2B, p < 0.0001; 1F3B, p < 0.0001; 1F4B, p = 0.0001), while there were no differences between groups in fusion trials. Migraine did not affect the fission and the fusion illusions. Conclusion. Results from this study confirm that patients with FM have a VCH suggesting that the pathological changes in cortical excitability might have important roles in the pathophysiology of FM. SIFI represents a noninvasive behavioral tool for the exploration of cross-sensory functional interplay
    corecore